NumPy is a powerful numerical computing library in Python. Below is a NumPy cheat sheet covering common array operations and functionalities:
Basics
Install NumPy:
pip install numpy
Import NumPy:
import numpy as np
Creating Arrays
Create an Array:
arr = np.array([1, 2, 3])
Zeros Array:
zeros_arr = np.zeros((2, 3))
Ones Array:
ones_arr = np.ones((3, 2))
Identity Matrix:
identity_matrix = np.eye(3)
Random Array:
random_arr = np.random.rand(2, 3)
Array Operations
Array Shape:
shape = arr.shape
Reshape Array:
reshaped_arr = arr.reshape((3, 1))
Transpose Array:
transposed_arr = arr.T
Accessing Elements:
element = arr[0, 1]
Slicing:
sub_array = arr[1:3, :]
Array Concatenation:
concat_arr = np.concatenate((arr1, arr2), axis=0)
Element-wise Operations:
result = arr1 * arr2
Matrix Multiplication:
matrix_mult = np.dot(matrix1, matrix2)
Mathematical Functions
Sum of Array:
total_sum = np.sum(arr)
Mean of Array:
mean_value = np.mean(arr)
Standard Deviation:
std_dev = np.std(arr)
Element-wise Square Root:
sqrt_arr = np.sqrt(arr)
Universal Functions (ufunc)
Element-wise Exponential:
exp_arr = np.exp(arr)
Element-wise Logarithm:
log_arr = np.log(arr)
Linear Algebra
Matrix Determinant:
det_value = np.linalg.det(matrix)
Matrix Inverse:
inv_matrix = np.linalg.inv(matrix)
Eigenvalues and Eigenvectors:
eigenvalues, eigenvectors = np.linalg.eig(matrix)
Statistics
Correlation Coefficient:
correlation = np.corrcoef(arr1, arr2)
Histogram:
hist, bins = np.histogram(data, bins=10)
File Handling
Load from Text File:
data = np.loadtxt('data.txt', delimiter=',')
Save to Text File:
np.savetxt('output.txt', data, delimiter=',')
This cheat sheet provides a quick reference for common NumPy operations and functionalities. For more detailed information, refer to the official NumPy documentation.